論文

レーダと受信時刻を観測値とする複数パッシブレーダのデータ融合 小菅 義夫^{†,††} 古賀 禎[†] 宮崎 裕己[†] 呂 暁東[†] 稲葉 敬之^{††}

Data Fusion of a Radar and Multiple Passive Radars with Arrival Time Measurements

Yoshio KOSUGE^{†,††}, Tadashi KOGA[†], Hiromi MIYAZAKI[†], Xiaodong LU[†], and Takayuki INABA^{††}

あらまし 目標の距離,仰角,方位角を観測するレーダと,目標からのレーダ反射波の受信時刻を観測する複数のパッシブレーダを使用した目標位置推定について述べる.この場合,パッシブレーダ間の電波到達時刻差(距離差)を使用して,目標の位置が推定可能である.この方式は,TDOA(Time Difference of Arrival)測位と呼ばれる.ただし,TDOAでは,目標とパッシブレーダの幾何学的位置関係によっては,位置が推定可能とは限らない.本論文では、レーダによる目標観測位置,3個以上の距離差からの目標位置推定値(距離差単独法)、レーダ観測値と距離差観測値を1個のベクトルに統合した結果にTaylor級数推定法を使用して得る目標位置推定値(同時法)の3個を比較する.この結果,同時法は、レーダ観測精度以上であることが分かった.また,距離差単独法で目標位置が推定可能な場合の同時法は、距離差単独法の推定精度及びレーダ観測精度を上回る.なお、距離差単独法では3個以上の距離差が推定に必要であるが、同時法では1個でもよい.更に、同時法において、距離差観測値が多いほど、位置推定精度は良いことを明らかにした.

キーワード レーダ、TDOA、誤差解析、距離差、データ融合

1. まえがき

一つのレーダと、複数のパッシブレーダを使用した 3次元の目標位置推定について述べる、レーダは、目 標の距離、仰角及び方位角を観測するとする、一方、 パッシブレーダは、既存レーダから送信された電波の 目標からの反射波の受信時刻を観測し、既存レーダか らの直接波は観測しないとする。

なお,既存レーダの送信タイミングは,他システム では使用できないとする.このため,パッシブレーダ 間の時刻整合は取れているが,パッシブレーダと既存 レーダ間の時刻整合は取れていないとする.

また、レーダ及びパッシブレーダの設置位置は既知

†電子航法研究所,調布市

†† 電気通信大学大学院情報理工学研究科,調布市

とする. 設置位置が既知であれば, 異なる位置に配置 されたパッシブレーダ間の電波到達時刻差(距離差) を使用して, Taylor 級数推定法により目標の位置が 推定可能である. この距離差のみを使用した方式は, TDOA (Time Difference of Arrival) 測位と呼ばれ る [1]~[5]. この TDOA 測位では, 3 個以上の距離差 を得る必要がある. このため, 4 個以上のパッシブレー ダが必要である.

レーダは測角精度の影響で、レーダと目標を結ぶ直 線と直交する方向の精度が悪いとの欠点を有する.こ れとくらべ、TDOA は角度精度の影響がないとの特 徴がある.しかし、TDOA では、マルチパス等の影 響で使用可能なパッシブレーダ数が減少し測位不能あ るいは測位劣化の場合がある.

なお, Taylor 級数推定法は, 目標とセンサ間の距離 を同時に複数観測し測位する TOA (Time of Arrival) を使用した GPS (Global Positioning System) 等で 使用されている [6]~[10]. この推定法では, 非線形の 連立方程式を解くため, 解の初期値を仮に与え Taylor 展開により線形近似して得た線型モデルに, 重み付き

Electronic Navigation Research Institute, 7–4–23 Jindaijihigashi-machi, Chofu-shi, 182–0012 Japan

Graduate School of Information and Engineering, University of Electro-Communications, 1–5–1 Chofugaoka, Chofu-shi, 182–8585 Japan DOI:10.14923/transcomj.2018JBP3027

最小自乗法を使用し解を算出する[11]. 推定のための 初期値が必要なのが Taylor 級数推定法の欠点である.

TDOA 測位は電波の送信時刻が不明でも使用可能 なため,既存のレーダに新たな機能を追加せずに,目 標からの反射波を活用できる利点がある.しかし,位 置推定のための初期値とパッシブレーダの位置関係に よっては,位置が推定可能とは限らない[1].例えば, 目標とパッシブレーダが同一平面にある場合,三次元 の目標位置推定は不可能である.

以上より,位置推定精度の確保には,レーダと複数 パッシブレーダの同時運用が期待される.

ところで、センサデータ融合の基本アルゴリズムは、 複数レーダ観測値のデータ融合である.

複数レーダからの観測値を融合するには,各観測値 をその観測雑音共分散行列で重み付き平均して1個の 観測値にデータ圧縮すればよい[12],[13].

また,まず2個の観測データをサンプリング間隔は 0としてカルマンフィルタを使用し融合し,この融合 結果と他の観測データを更にカルマンフィルタを使用 し融合するとの逐次処理が可能である[13].

この逐次処理による融合結果は,観測雑音共分散 行列で重み付き平均したデータ圧縮結果と等価であ る[12],[13].

なお,これらの方法はレーダ間の観測雑音が無相関 と仮定している.

ここで,文献[14] あるいは[15] は,時間差(距離 差)が直接観測され,受信機間で距離差観測雑音は無 相関とみなせるとしている.無相関の仮定が成立すれ ば,距離差観測値も,複数レーダ観測値のデータ融合 アルゴリズムが応用可能である.

しかし,受信時刻を観測し距離差を算出するパッシ ブレーダの場合,異なる距離差は無相関とはならな い[16],[17].したがって,レーダ観測値と観測雑音に 相関を有する距離差観測値の融合に,従来の複数レー ダ観測値のデータ融合アルゴリズムを使用するのは誤 りである.

また,レーダ観測位置を初期値とした TDOA 測位 結果とレーダ観測位置をそれぞれ測位誤差共分散行列, レーダ観測雑音共分散行列を使用して重み付けし平均 する方法が考えられる.しかし,距離差観測値は得ら れているが TDOA 測位が不可能な場合,距離差は使 用できないとの欠点を有する.また,TDOA 測位が 可能な場合も,融合して位置推定精度が向上するかど うかは不明である. 本論文では、レーダ観測値と1個以上の距離差観測 値を一つのベクトルに統合し、Taylor級数推定法によ り目標位置を推定する方法を提案する(同時法).ま た.同時法の目標位置推定値と、レーダからの目標位 置観測値及びTaylor級数推定法による3個以上の距 離差からの目標位置推定値(距離差単独法)の精度を 解析的に比較する.更に、同時法において、距離差観 測値数と、位置推定精度の関係を明らかにする.

2. 座標系と観測値の線形モデル

2.1 北基準直交座標と極座標

レーダを原点,東を x 軸の正,北を y 軸の正,水平 面(x-y 面) に垂直で上方を z 軸の正に取った直交座 標(Cartesian coordinates)を「北基準直交座標」と 呼ぶ.

北基準直交座標での目標の位置ベクトル <u>L</u> を次式 で表す (L は *location* の略). ここで, <u>a</u>^T は, ベクト ル a の転置行列を表す.

$$\underline{L} = (x, y, z)^T \tag{1}$$

レーダより目標までの距離を R (Range),水平面 より目標までの仰角を E (Elevation),水平面内で北 方向より目標までの方位角を B_y (Bearing) とした座 標を「極座標」と呼ぶ.

北基準直交座標の目標位置 $(x, y, z)^T$ と極座標の目 標位置 $(R, E, By)^T$ の間には,次の関係がある.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} R\cos E\sin By \\ R\cos E\cos By \\ R\sin E \end{pmatrix}$$
(2)

2.2 距離差及びレーダ観測位置のモデル

まず、レーダの位置ベクトルを <u>B</u>₀ = $(x_0, y_0, z_0)^T$ とすれば、座標の定義より次式を得る.

$$\underline{B}_0 = (0,0,0)^T \tag{3}$$

次に, レーダとは異なる位置にある i (i = 1, 2, ..., n) 番目のパッシブレーダの位置ベクトルを, 次式で表す. なお, パッシブレーダの位置は, 互いに 異なるとする.

$$\underline{B}_i = (x_i, y_i, z_i)^T \tag{4}$$

すると, i ($i = 0, 1, \dots, n$) 番目のセンサ(レーダ あるいはパッシブレーダ)と目標間の距離の真値 R_i は次式となる.

$$R_i = f_i(\underline{L}) \tag{5}$$

ここで、次式を定義する.

$$f_i(\underline{L}) = \sqrt{(x_i - x)^2 + (y_i - y)^2 + (z_i - z)^2}$$
(6)

すると, i (i = 2, ..., n) 番目のパッシブレーダと目 標間の距離と, 1 番目のパッシブレーダと目標間の距 離の差の観測値 r_{io} (o は observation の略) は次式 となる.

$$r_{io} = R_i - R_1 + v_i \tag{7}$$

ここで, v_i はランダムな距離差の観測誤差である. すると, 次の式 (9) に全微分の公式を使用して, つ ぎの性質を得る [1].

(性質 1) 目標位置推定のための初期値を $\underline{L}^0 = (x^0, y^0, z^0)^T$ とすると、次式を得る.

$$\Delta r_{io} \approx (\underline{\omega}(i) - \underline{\omega}(1))\underline{a}_l + v_i \tag{8}$$

ここで、次式を定義する.

$$\Delta r_{io} = r_{io} - [f_i(\underline{L}^0) - f_1(\underline{L}^0)] \tag{9}$$

$$\underline{\omega}(i) = (\underline{L}^0 - \underline{B}_i)^T / f_i(\underline{L}^0) \tag{10}$$

$$\underline{a}_l = \underline{L} - \underline{L}^0 \tag{11}$$

一方,北基準直交座標でのレーダ観測位置ベクトル <u>z</u>,は,式(1)より,次式となる.

$$\underline{z}_l = \underline{L} + \underline{v}_l \tag{12}$$

ここで,<u>v</u>_l は,北基準直交座標による目標位置の観測 雑音ベクトルである.

なお, E[]は平均, D > 0は行列 D が正値対称行 列(固有値が全て正と等価), $D \ge 0$ は行列 D が半 正値対称行列(固有値が全て非負と等価), <u>0</u>は零ベク トルを表すとして, 次式を仮定する.

$$E[\underline{v}_l] = \underline{0} \tag{13}$$

$$E\left\lfloor \underline{v}_{l} \underline{v}_{l}^{T} \right\rfloor = V_{l} > 0 \tag{14}$$

なお, R > 0 かつ $E < \pi/2$ のレーダが通常観測可 能な範囲では,式 (14) は成立する [18].また,初期値 <u> L^0 </u> には,北基準直交座標でのレーダ観測位置ベクト ル z_1 が使用可能である.

2.3 距離差ベクトルの観測モデル

性質1より,n-1個の距離差の観測モデルとして, 次式を得る(RDは Range Difference の略).

$$\underline{b}_l = A_l \underline{a}_l + \underline{v}_{RD} \tag{15}$$

ここで、次式を定義する.

$$\underline{b}_{l} = (\Delta r_{2o}, \cdots, \Delta r_{no})^{T}$$

$$A_{l} =$$

$$\left(\begin{bmatrix} \underline{\omega}(2) - \underline{\omega}(1) \end{bmatrix}^{T} \cdots \begin{bmatrix} \underline{\omega}(n) - \underline{\omega}(1) \end{bmatrix}^{T} \right)^{T}$$
(16)

$$\underline{v}_{RD} = (v_2, \cdots, v_n)^T \tag{18}$$

(17)

なお,次式のように,各観測雑音の平均は0,観測 雑音共分散行列は正値対称行列と仮定できる[16].

$$E[\underline{v}_{RD}] = \underline{0} \tag{19}$$

$$V_{RD} = E\left[\underline{v}_{RD}\underline{v}_{RD}^{T}\right] > 0$$
⁽²⁰⁾

ところで,距離差観測値は,式(7)が示すように,1 番目のパッシブレーダの受信時刻検出誤差を共通に含む.このため,距離差観測値が互いに無相関の仮定は 成立せず,式(20)は対角行列とはならない[16],[17].

従来の TDOA では,式 (15) において,式 (11) を 未知数として位置推定を行っていた.しかし,本論文 では,レーダの観測位置と融合するため,式 (1) を未 知数として位置推定を行う.このため,式 (11) を使用 して,式 (15) を変形し,次式を得る.

$$\underline{z}_{RD} = A_l \underline{L} + \underline{v}_{RD} \tag{21}$$

ここで、次式を定義する.

$$\underline{z}_{RD} = \underline{b}_l + A_l \underline{L}^0 \tag{22}$$

なお,<u>b</u>_l は式 (7), (9), (16), また A_l は式 (4), (10), (17) より定まるため,式 (22) は観測値と初期 値より定まり,未知数である式 (1) には依存しない値 である.

3. 従来法による位置推定

ここでは、距離差観測値のみからの位置推定、レー ダ観測値と距離差観測値による位置推定について述べ る.なお、行列の大小関係関連における諸結果を付録 にまとめた.

3.1 距離差観測値からの位置推定

次の性質は, n-1 個の距離差の観測値を使用した 重み付き最小自乗法 [19], [20] による目標位置の算出法 を示す.

(性質 2) 式 (21) 及び (20) より, 重み付き最小自乗法

により、 \underline{L} を推定する.すなわち、次式を最小とする $\underline{\hat{L}}_{RD}$ を算出する.

$$J = \left(\underline{z}_{RD} - A_l \underline{\hat{L}}_{RD}\right)^T V_{RD}^{-1} \left(\underline{z}_{RD} - A_l \underline{\hat{L}}_{RD}\right)$$
(23)

解は、 $A_l^T V_{RD}^{-1} A_l$ が正則行列 ($A_l^T V_{RD}^{-1} A_l > 0$ と等 価) ならば、次式である.

$$\underline{\hat{L}}_{RD} = \left(A_l^T V_{RD}^{-1} A_l\right)^{-1} A_l^T V_{RD}^{-1} \underline{z}_{RD}$$
(24)

式 (24) による位置推定法を距離差単独法と呼ぶこ とにする.なお,距離差単独法では,最低3個の距離 差観測値が必要である [16].

次の性質は,重み付き最小自乗法により算出した目 標位置が不偏推定量であることを示すとともに,その 推定誤差共分散行列を示す[19],[20].

(性質3)式(24)による推定値は、次の性質を有する.

$$E\left[\underline{\hat{L}}_{RD}\right] = \underline{L}$$
(25)
$$E\left[\left(\underline{\hat{L}}_{RD} - \underline{L}\right)\left(\underline{\hat{L}}_{RD} - \underline{L}\right)^{T}\right]$$
$$= \left(A_{l}^{T}V_{RD}^{-1}A_{l}\right)^{-1}$$
(26)

3.2 レーダ観測値と距離差単独法の融合

次の性質は、レーダ観測位置と距離差単独法の位置 推定値を使用した重み付き最小自乗法 [19], [20] による 目標位置の算出法を示す.

(性質 4) 式 (12), (14) 及び (24)~(26) より,重み付 き最小自乗法により,<u>L</u>を推定する.すなわち,次式 を最小とする <u> \hat{L}_f </u>を算出する (f the fusion の略).

$$J = \left(\underline{z}_{l} - \underline{\hat{L}}_{f}\right)^{T} V_{l}^{-1} \left(\underline{z}_{l} - \underline{\hat{L}}_{f}\right) + \left(\underline{\hat{L}}_{RD} - \underline{\hat{L}}_{f}\right)^{T} \left(A_{l}^{T} V_{RD}^{-1} A_{l}\right) \left(\underline{\hat{L}}_{RD} - \underline{\hat{L}}_{f}\right) \quad (27)$$

解は、 $A_l^T V_{RD}^{-1} A_l$ が正則行列ならば、次式である.

$$\underline{\hat{L}}_{f} = \left[V_{l}^{-1} + A_{l}^{T} V_{RD}^{-1} A_{l} \right]^{-1} \\
\times \left[V_{l}^{-1} \underline{z}_{l} + A_{l}^{T} V_{RD}^{-1} A_{l} \underline{\hat{L}}_{RD} \right]$$
(28)

式(28)による位置推定法を融合法と呼ぶことにする.

次の性質は,重み付き最小自乗法により算出した目 標位置が不偏推定量であることを示すとともに,その 推定誤差共分散行列を示す[19],[20].

(性質 5) (28) による推定値は、次の性質を有する.

$$E\left[\underline{\hat{L}}_{f}\right] = \underline{L}$$

$$E\left[\left(\underline{\hat{L}}_{f} - \underline{L}\right)\left(\underline{\hat{L}}_{f} - \underline{L}\right)^{T}\right]$$

$$= \left[V_{l}^{-1} + A_{l}^{T}V_{RD}^{-1}A_{l}\right]^{-1}$$

$$(30)$$

4. 同時法による位置推定

4.1 レーダと距離差の同時観測モデル

レーダからの位置観測値と n-1 個の距離差観測値 を融合した線形モデルについて述べる.

式(12)及び(21)より、次式を得る.

$$\underline{b} = F_l \underline{L} + \underline{w}_l \tag{31}$$

ここで、次式を定義する.

$$\underline{b} = \left(\begin{array}{cc} \underline{z}_l^T & \underline{z}_{RD}^T \end{array}\right)^T \tag{32}$$

$$F_l = \left(\begin{array}{cc} I_3 & A_l^T \end{array}\right)^T \tag{33}$$

$$\underline{w}_l = \begin{pmatrix} \underline{v}_l^T & \underline{v}_{RD}^T \end{pmatrix}^T \tag{34}$$

また,式(34)に,式(13)及び(19)を使用して,次 式を得る.

$$E[\underline{w}_l] = \underline{0} \tag{35}$$

更に、レーダの位置とn-1個の距離差の観測雑音 は無相関と仮定して、式(34)に、式(14)及び(20)を 使用して、次式を得る.なお、 $O_{m,n}$ は、 $m \times n$ の零 行列とする.

$$W_l = E\left[\underline{w}_l \underline{w}_l^T\right] = \begin{pmatrix} V_l & O_{3,n-1} \\ O_{n-1,3} & V_{RD} \end{pmatrix}$$
(36)

4.2 レーダ観測値と距離差観測値からの位置推定 次の性質は、レーダ観測値と距離差観測値を1個の ベクトルに統合した結果から目標位置を推定するのに 使用する.

(性質 6) 次式が成立する.

$$W_l > 0 \tag{37}$$

$$F_l^T W_l^{-1} F_l > 0 (38)$$

(証明)式(36)に,式(14)及び(20)を使用して,式 (37)を得る.

式 (33) 及び (36) より,式 (14) 及び (37) を使用して,次式を得る.

$$F_l^T W_l^{-1} F_l = V_l^{-1} + A_l^T V_{RD}^{-1} A_l$$
(39)

式 (39) に,式 (14) より $V_l^{-1} > 0$,式 (20) 及び付録 の性質 A-8 より $A_l^T V_{RD}^{-1} A_l \ge 0$ を使用して,式 (38) を得る. (証明終)

次の性質は,レーダからの位置とn-1個の距離差 の観測値を使用した重み付き最小自乗法[19],[20]によ る目標位置の算出法を示す.

(性質 7)式(31)及び(37)より,重み付き最小自乗法 により,<u>L</u>を推定する.すなわち,次式を最小とする <u><u>Ĵ</u>を算出する.</u>

$$J = \left(\underline{b} - F_l \underline{\hat{L}}\right)^T W_l^{-1} \left(\underline{b} - F_l \underline{\hat{L}}\right)$$
(40)

解は、 $F_l^T W_l^{-1} F_l$ が正則行列ならば、次式である.

$$\underline{\hat{L}} = \left(F_l^T W_l^{-1} F_l\right)^{-1} F_l^T W_l^{-1} \underline{b}$$
(41)

式(41)による位置推定法を同時法と呼ぶことにす る.なお,同時法では,最低1個の距離差観測値が使 用できればよい.また,性質6は,同時法により,位 置推定が可能なことを示す.

次の性質は,重み付き最小自乗法により算出した目 標位置が不偏推定量であることを示すとともに,その 推定誤差共分散行列を示す[19],[20].

(性質8)式(41)による推定値は、次の性質を有する.

$$E\left[\underline{\hat{L}}\right] = \underline{L}$$

$$E\left[\left(\underline{\hat{L}} - \underline{L}\right)\left(\underline{\hat{L}} - \underline{L}\right)^{T}\right] = \left(F_{l}^{T}W_{l}^{-1}F_{l}\right)^{-1}$$
(42)
(42)

5. 性能比較

ここでは、レーダ観測精度と同時法の位置推定精度 を比較する、また、距離差単独法と同時法の位置推定 精度を比較する.更に、距離差単独法で位置推定が可 能な場合、この推定値とレーダ観測位置の融合結果と 同時法の位置推定精度を比較する.

5.1 レーダと同時法の比較

次の性質は,式(14)及び(43)より,同時法の位置 推定精度は,レーダ観測精度以上であることを示す. すなわち,同時法によりレーダと距離差観測値とを融 合すれば,距離差観測値がたとえ1個でも位置推定精 度が向上可能である.また,距離差単独法で位置推定 が可能な場合(性質2より, $A_l^T V_{RD}^{-1} A_l > 0$ のとき), 同時法の位置推定精度はレーダ観測精度を上回る. (性質9)次式が成立する.

$$\left(F_l^T W_l^{-1} F_l\right)^{-1} \le V_l \tag{44}$$

更に、 $A_l^T V_{RD}^{-1} A_l > 0$ ならば、次式が成立する.

$$\left(F_l^T W_l^{-1} F_l\right)^{-1} < V_l \tag{45}$$

(証明)式(39)に,式(14),(20)及び付録の性質 A-8 を使用して,次式を得る.

$$F_l^T W_l^{-1} F_l \ge V_l^{-1} > 0 \tag{46}$$

式 (46) より, 付録の性質 A-4 を使用して, 式 (44) を 得る.

 $A_l^T V_{RD}^{-1} A_l > 0$ ならば,式 (39)に式 (14)を使用して,次式を得る.

$$0 < V_l^{-1} < F_l^T W_l^{-1} F_l \tag{47}$$

式 (47) より,付録の性質 A-5 を使用して,式 (45) を得る. (証明終)

5.2 距離差単独法と同時法の比較

次の性質は,式(43)及び(26)より,同時法の位置 推定精度は,距離差単独法より良いことを示す.すな わち,距離差単独法で位置推定が可能な場合,同時法 によりレーダと距離差観測値とを融合すれば,距離差 単独法の位置推定精度を上回る.

(性質 10) $A_l^T V_{BD}^{-1} A_l > 0$ ならば,次式が成立する.

$$\left(F_{l}^{T}W_{l}^{-1}F_{l}\right)^{-1} < \left(A_{l}^{T}V_{RD}^{-1}A_{l}\right)^{-1}$$
(48)

(証明)式 (39)に式 (14)を使用して $A_l^T V_{RD}^{-1} A_l < F_l^T W_l^{-1} F_l$ であるので, $A_l^T V_{RD}^{-1} A_l > 0$ の仮定を使用して,次式を得る.

$$0 < A_l^T V_{RD}^{-1} A_l < F_l^T W_l^{-1} F_l$$
(49)

式 (49) より,付録の性質 A-5 を使用して,式 (48) を得る. (証明終)

5.3 融合法と同時法の比較

次の式 (50) は,式 (30) 及び (43) より,融合法及 び同時法で算出した位置推定誤差共分散行列は同一で あることを示す.更に,次の式 (51) は,式 (28) 及び (41) より,両者の位置推定結果も,同一であることを 示す.

(性質 11) $A_l^T V_{RD}^{-1} A_l > 0$ ならば,次式が成立する.

$$\begin{bmatrix} V_l^{-1} + A_l^T V_{RD}^{-1} A_l \end{bmatrix}^{-1} = \left(F_l^T W_l^{-1} F_l \right)^{-1}$$
(50)
$$\underline{\hat{L}}_f = \underline{\hat{L}}$$
(51)

(証明)式(39)より,式(50)を得る.

式 (33) 及び (36) より,式 (37),(14) 及び (20) を 使用して,次式を得る.

$$F_l^T W_l^{-1} = \left(\begin{array}{cc} V_l^{-1} & A_l^T V_{RD}^{-1} \end{array} \right)$$
 (52)

式 (52) 及び (32) より、次式を得る.

$$F_l^T W_l^{-1} \underline{b} = V_l^{-1} \underline{z}_l + A_l^T V_{RD}^{-1} \underline{z}_{RD}$$
(53)

式 (41) に,式 (50) 及び (53) を使用して,次式を 得る.

$$\underline{\hat{L}} = \left[V_l^{-1} + A_l^T V_{RD}^{-1} A_l \right]^{-1} \\
\times \left[V_l^{-1} \underline{z}_l + A_l^T V_{RD}^{-1} \underline{z}_{RD} \right]$$
(54)

式 (24) より, 次式を得る.

$$A_l^T V_{RD}^{-1} A_l \underline{\hat{L}}_{RD} = A_l^T V_{RD}^{-1} \underline{z}_{RD}$$
(55)

式 (54) 及び (55) より,式 (28) を使用して,式 (51) を得る. (証明終)

もし距離差単独法により目標位置が推定可能なとき 融合法の推定精度が同時法を上回るのであれば,距離 差単独法で推定不可能なときのみ同時法を使用すべき である.

しかし, 性質 11 は融合法及び同時法の推定結果は 同一と結論している.したがって, 距離差単独法が使 用可能なときも,同時法を使用してよいと結論できる.

6.考察

6.1 距離差単独法で推定不可能な場合

距離差観測値が1個あるいは2個の場合,未知数の数(x, y, zの3個)が方程式の数を上回る.このため,距離差単独法では3次元の位置は推定できない.

距離差観測値が3個以上の場合,方程式の数が未知 数の数以上であるが,目標とパッシブレーダの幾何学 的位置関係によっては,距離差単独法では目標位置が 推定不可能となる[16],[21].例えばパッシブレーダと 目標初期位置が同一平面上にある場合,距離差単独法 では目標位置が推定不可能である.

ここで、式(20)及び付録の性質 A-8より、 $A_l^T V_{RD}^{-1} A_l$ は半正値対称行列である.距離差単独法で位置推定可能となる条件は、性質 2 で示したように、半正値対称行列 $A_l^T V_{RD}^{-1} A_l$ が正則である.ただし、 $A_l^T V_{RD}^{-1} A_l$ が正則であっても、計算機の丸めの誤差等の影響で、その逆行列は発散し目標位置が推定できないことがあ

る [21]. この場合,距離差単独法では位置推定が不可 能であり,融合法が使用できない.

しかし,同時法では,式(41)及び(39)が示すよう に $A_l^T V_{RD}^{-1} A_l$ の逆行列の演算は不要である.このた め,融合法では位置推定ができない場合にも,同時法 は使用可能なのが長所である.

6.2 距離差観測値数増加の影響

距離差単独法では,必ず位置が推定可能とは限らない.このため,ここでは,同時法で使用する距離差の 個数が増えれば必ず位置推定精度が向上するかどうか を考察する.

距離差観測値が1個増えて、n個となった場合の, 式(16)~(18),(20),(22),(32)~(34)及び(36)をそ れぞれ下記のように書く.

$$\underline{b}_{l}^{\prime} = \left(\underline{b}_{l}^{T}, \Delta r_{n+1o}\right)^{T}$$

$$A_{l}^{\prime} =$$
(56)

$$\left(\begin{array}{cc}A_l^T & \left[\underline{\omega}(n+1) - \underline{\omega}(1)\right]^T\end{array}\right)^T \tag{57}$$

$$\underline{v}'_{RD} = \left(\underline{v}^T_{RD}, v_{n+1}\right)^T \tag{58}$$

$$V_{RD}' = \begin{pmatrix} V_{RD} & D_{n+1} \\ D_{n+1}^T & D_{n+1,n+1} \end{pmatrix}$$
(59)

$$\underline{z}'_{RD} = \underline{b}'_l + A'_l \underline{L}^0 \tag{60}$$

$$\underline{b}' = \left(\underline{z}_l^T \quad \begin{bmatrix} \underline{z}'_{RD} \end{bmatrix}^T \right)^T \tag{61}$$

$$F_l' = \left(\begin{array}{cc} I_3 & \left[A_l' \right]^T \end{array} \right)^T \tag{62}$$

$$\underline{w}_{l}^{\prime} = \left(\underline{v}_{l}^{T} \quad \left[\underline{v}_{RD}^{\prime} \right]^{T} \right)^{T} \tag{63}$$

$$W_l' = E\left[\underline{w}_l'(\underline{w}_l')^T\right] \tag{64}$$

ここで,次式を定義する.

$$D_{n+1} = E[\underline{v}_{RD}v_{n+1}] \tag{65}$$

$$D_{n+1,n+1} = E\left[v_{n+1}^2\right]$$
(66)

すると,式(63)は,式(34)及び(58)より,次式と なる.

$$\underline{w}_{l}^{\prime} = \begin{pmatrix} \underline{w}_{l}^{T} & v_{n+1} \end{pmatrix}^{T}$$

$$(67)$$

また,式(64)に,式(67),(36)及び(66)を使用して,次式を得る.

$$W_{l}' = \begin{pmatrix} W_{l} & W_{n+1} \\ W_{n+1}^{T} & D_{n+1,n+1} \end{pmatrix}$$
(68)

ここで、次式を定義する.
$$W_{n+1} = E[\underline{w}_l v_{n+1}]$$
 (69)

なお,式(20)と同様に,次式を仮定する.

$$V_{RD}' > 0 \tag{70}$$

次の性質及び性質8は、距離差観測値の個数が増加 すれば、同時法の位置推定精度はよくなることを示す. (性質12)式(70)が成立するとする.更に、式(36) と同様にレーダの位置とn個の距離差の観測雑音は無 相関と仮定すると、次式を得る.

$$W_l' > 0 \tag{71}$$

$$(F_{l}')^{T}(W_{l}')^{-1}F_{l}' > 0$$

$$\left[(F_{l}')^{T}(W_{l}')^{-1}F_{l}'\right]^{-1}$$
(72)

$$\leq \left[F_l^T W_l^{-1} F_l\right]^{-1} \tag{73}$$

(証明) 性質 6 と同様にして,式 (71) 及び (72) を得る.

式 (71) 及び (37) より,式 (68) に付録の定理 1 を 使用して,次式を得る.

$$(W_l')^{-1} \ge \begin{pmatrix} W_l^{-1} & O_{n+2,1} \\ O_{1,n+2} & 0 \end{pmatrix}$$
(74)

式 (62) 及び (57) より,式 (33) を使用して,次式を 得る.

$$F_{l}' = \left(F_{l}^{T} \quad \left[\underline{\omega}(n+1) - \underline{\omega}(1)\right]^{T} \right)^{T}$$
(75)

式 (75) 及び (74) より,付録の性質 A-8 を使用して, 次式を得る.

$$(F_l')^T (W_l')^{-1} F_l' \ge F_l^T W_l^{-1} F_l$$
(76)

式 (76) 及び (38) より,付録の性質 A-4 を使用して, 式 (73) を得る. (証明終)

7. 比 較 例

式(48)は、同時法の位置推定精度は、距離差単独 法より良いことを解析的に示す.しかし、レーダ観測 精度と同時法の位置推定精度が常に同一でも、式(44) は成立する.このため、距離差単独法で位置推定が不 可能な場合でも同時法が有効と結論するは、常に同一 とはならないことを示す必要がある.

ここでは,距離差観測値が1個の場合の同時法の位

置推定精度について述べる.なお,幾何学的意味のわ かりやすい二次元平面での例を示す.

(例 1) レーダから目標までの距離を R > 0, レー ダの位置を <u>B</u>₀ = $(0,0)^T$, パッシブレーダの位置 を <u>B</u>₁ = $(x_1, R)^T$, <u>B</u>₂ = $(-x_1, R)^T$ (0 < x_1), 目標の位置ベクトル及び推定のための初期値を <u>L</u> = <u>L</u>⁰ = $(0, R)^T$ とする.

この場合, $R_2 = R_1 = x_1$ であり,距離差観測雑音 が0であれば,距離差観測値より目標は2個のパッシ ブレーダから等距離にあるとわかる.このため,目標 は y 軸上のどこかに存在すると判定できる.すなわち, パッシブレーダのみでは,位置の x 成分は0と推定で きるが, y 成分は推定不可能である.

ここで,北基準直交座標のレーダ観測雑音共分散行 列を次式で定義する[18].

$$V_l = \begin{pmatrix} R^2 \sigma_{By}^2 & 0\\ 0 & \sigma_R^2 \end{pmatrix}$$
(77)

なお、 σ_{By}^2 は方位角観測雑音の分散、 σ_R^2 は距離観 測雑音の分散である.

また,式 (20) の距離差観測雑音の分散を次式で定 義する.

$$V_{RD} = \sigma^2 \tag{78}$$

式(10)は,

$$\underline{\omega}(1) = (\begin{array}{cc} -1 & 0 \end{array}), \ \underline{\omega}(2) = (\begin{array}{cc} 1 & 0 \end{array})$$
(79)

となるので,式(17)は,

$$A_l = \begin{pmatrix} 2 & 0 \end{pmatrix} \tag{80}$$

となり、式 (25) は、次式となる.

$$F_l = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 2 & 0 \end{pmatrix}$$
(81)

一方,式(36)は,式(77)及び(78)より,次式となる.

$$W_l = \begin{pmatrix} R^2 \sigma_{By}^2 & 0 & 0\\ 0 & \sigma_R^2 & 0\\ 0 & 0 & \sigma^2 \end{pmatrix}$$
(82)

すると,式(81)及び(82)より,式(43)は次式となる.

$$\begin{pmatrix} F_l^T W_l^{-1} F_l \end{pmatrix}^{-1} \\ = \begin{pmatrix} \frac{R^2 \sigma_{By}^2 \sigma^2}{\sigma^2 + 4R^2 \sigma_{By}^2} & 0\\ 0 & \sigma_R^2 \end{pmatrix}$$
(83)

x 成分のレーダ観測雑音の分散と同時法の推定誤差 の分散の差は,式(77)及び(83)より,次式となる.

$$R^{2}\sigma_{By}^{2} - \frac{R^{2}\sigma_{By}^{2}\sigma^{2}}{\sigma^{2} + 4R^{2}\sigma_{By}^{2}}$$
$$= \frac{4R^{4}\sigma_{By}^{4}}{\sigma^{2} + 4R^{2}\sigma_{By}^{2}} > 0$$
(84)

式(84)より,x成分は、同時法の推定精度がレーダ 観測精度よりよいことが分かる.

一方,式(77)及び(83)より,y成分は,同時法の 推定精度とレーダ観測精度が同一であることが分かる.

8. む す び

本論文では、目標のレーダ観測位置と、距離差から の目標位置推定(距離差単独法)値と、レーダ観測値 と距離差観測値を1個のベクトルに統合した結果から の目標位置推定(同時法)値と、レーダの観測位置と 距離差単独法の位置推定値との融合結果(融合法)の 精度を比較した.この結果、同時法は、レーダ観測値 の精度以上であることが分かった.また、距離差単独 法で目標位置推定可能な場合の同時法は融合法と同一 結果であり、距離差単独法の推定精度及びレーダ観測 精度を上回ることが分かった.なお、距離差単独法で は目標位置が推定不可能な場合でも、同時法では距離 差を活用できる.例えば、距離差単独法では3個以上 の距離差が必要であるが、同時法では1個でもよい. 更に、同時法において、距離差観測値が多いほど、位 置推定精度は良いことを明らかにした.

献

文

- [1] 宮崎裕己,小菅義夫,島田浩樹,田中俊幸,"TDOA 測 位における基準局選択と測位結果の関連,"信学論(B), vol.J97-B, no.12, pp.1234–1242, Dec. 2014.
- [2] W.K. Chao and K.T. Lay, "Mobile positioning and tracking based on TOA TSOA TDOA AOA with NLOS-reduced distance measurement," IEICE Trans. Commun., vol.E90-B, no.12, pp.2043–2053, Dec. 2007.
- [3] EUROCAE, "Technical Specification for Wide Area Multilateration (WAM) System," Version 1.0, ED-142, Oct. 2009.
- [4] B. Forssell, Radionavigation Systems, Prentice Hall,

London, 1991.

- [5] 宮崎裕己,他,"航空路監視用 WAM 技術の評価について," 第 15 回電子航法研究所研究発表会講演概要, pp.69-74, 東京, June 2015.
- [6] 佐田達典, GPS 測量技術, オーム社, 東京, 2003.
- [7] Y. Bar-Shalom, X.R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, John Wiley & Sons, New York, 2001.
- [8] M.S. Grewal, L.R. Weill, and A.P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, John Wiley & Sons, Hoboken, 2007.
- [9] 坂井丈泰, GPS 技術入門,東京電機大学出版局,東京, 2003.
- [10] J. Yan, C.C.J.M. Tiberious, G.J.M. Janssen, P.J.G. Teunissen, and G. Bellusci, "Review of range-based positioning algorithms," IEEE Trans. Aerosp. Electron. Syst. Mag., vol.28, no.6, pp.2–27, Aug. 2013.
- [11] W.H. Foy, "Position-location solutions by Taylorseries estimation," IEEE Trans. Aerosp. Electron. Syst., vol.12, no.2, pp.187–194, March 1976.
- [12] C.B. Chang and J.A. Tabaczynski, "Application of state estimation to target tracking," IEEE Trans. Autom. Control, vol.29, no.2, pp.98–108, Feb. 1984.
- [13] D. Willner, C.B. Chang, and K.P. Dunn, "Kalman filter algorithms for a multi-sensor system," 1976 IEEE Conf. on Decision and Contr., pp.570–574, Dec. 1976.
- [14] J.D. Bard and F.M. Ham, "Time difference of arrival dilution of precision and applications," IEEE Trans. Signal Process., vol.47, no.2, pp.521–523, Feb. 1999.
- [15] 高林祐樹, 松崎貴史, 亀田洋志, 系 正義, "複数センサの 到来時間差/ドップラー周波数差を利用する非同期追尾フィ ルタ,"信学論(B), vol.J91-B, no.12, pp.1711–1724, Dec. 2008.
- [16] 小菅義夫,古賀 禎,宮崎裕己,"TOAとTDOA 測位の同一性,"信学論(B), vol.J98-B, no.2, pp.223-233, Feb. 2015.
- [17] R. Kaune, J. Hörst, and W. Koch, "Accuracy analysis for TDOA localization in sensor networks," 14th International Conference on Information Fusion, pp.1647–16574, July 2011.
- [18] 小菅義夫, "レーダによる単一目標追尾法の現状と将来," 信 学論(B), vol.J93-B, no.11, pp.1504–1511, Nov. 2010.
- [19] A. Gelb, ed., Applied Optimal Estimation, The MIT Press, Cambridge, 1974.
- [20] 中川 徹,小柳義夫,最小二乗法による実験データ解析, 東京大学出版会,東京,1982.
- [21] 小菅義夫, "特異値による TOA 測位精度の解析," 信学論
 (B), vol.J97-B, no.3, pp.333-340, March 2014.
- [22] 小菅義夫,古賀 禎,宮崎裕己,秋田 学,稲葉敬之,"テ イラー級数推定法を用いた TSOA による測位法の性能," 信学論(B), vol.J99-B, no.10, pp.966–975, Oct. 2016.

録

(定理1) 正値対称行列 D は, 次式とする.

付

$$D = \begin{pmatrix} D_{11} & D_{12} \\ D_{12}^T & D_{22} \end{pmatrix}$$
 (A·1)

ここで, D_{11} , D_{22} はそれぞれ $n \times n$, $m \times m$ の 行列とする.すると,ブロック行列の逆行列の公式[8] を使用して,次式を得る[22].

$$D^{-1} \ge \begin{pmatrix} D_{11}^{-1} & O_{n,m} \\ O_{m,n} & O_{m,m} \end{pmatrix}$$
(A·2)

(行列の大小関係関連における諸結果)

 $D, D_1, D_2, D_3 を n × n の実対称行列とする.$ $まず, <math>D_1 - D_2 > 0 を D_1 > D_2 と定義する. また,$ $D_1 - D_2 \ge 0 を D_1 \ge D_2 と定義する.$

つぎに, $(\underline{x}, \underline{y})$ はベクトル $\underline{x}, \underline{y}$ の内積を表すとする. すると, 次の性質を得る.

(性質 A-1) $D \ge 0$ (固有値が全て非負) と, 任意の n次元ベクトル <u>x</u> に対して次式が成立することは同値で ある,

$$(D\underline{x},\underline{x}) \ge 0 \tag{A.3}$$

(性質 A-2) D > 0 (固有値が全て正)と,任意の n次元ベクトル <u>x</u> (ただし, <u> $x \neq 0$ </u>) に対して次式が成 立することは同値である,

$$(D\underline{x},\underline{x}) > 0 \tag{A.4}$$

(性質 A-3) $D_1 \ge D_2$ かつ, $D_2 \ge D_3$ のとき, $D_1 \ge D_3$ である.また, $D_1 \ge D_2$ かつ, $D_2 \ge D_1$ のとき, $D_1 = D_2$ である.

(性質 A-4) $D_1 \ge D_2 > 0$ ならば, $D_2^{-1} \ge D_1^{-1} > 0$ である.

(性質 A-5) $D_1 > D_2 > 0$ ならば, $D_2^{-1} > D_1^{-1} > 0$ である.

(性質 A-6) D > 0ならば, Dの対角成分は正である. (性質 A-7) $D \ge 0$ ならば, Dの対角成分は非負である.

 (性質 A-8) D≥0 ならば、0≤F^TDF である.
 (平成 30 年 6 月 6 日受付、8 月 13 日再受付、 9 月 14 日早期公開)

小菅 義夫 (正員)

昭47早大・理工・数学卒.昭49同大大 学院修士課程了.同年三菱電機(株)入社. 平26より,電子航法研究所及び電通大勤務.単一及び複数センサによる多目標追尾 に関する研究に従事.工博.IEEEシニア 会員.

古賀 禎 (正員)

平 5 年東京理科大・理工・電気卒. 平 7 年同大大学院修士課程了. 同年運輸省電子 航法研究所入所. 平 13 年カリフォルニア 大デービス校客員研究員. 工博. 二次監視 レーダ,空港面監視システムの研究に従事.

宮崎 裕己 (正員)

平3 信州大・工卒. 平5 同大大学院修士 課程了.同年運輸省電子航法研究所入省. 以来,二次監視レーダやマルチラテレー ションに関する研究開発に従事.電気学会 会員.

呂 暁東 (正員)

平 17 東工大大学院情報理工学研究科博 士課程了.同年同大学助教.平 24 電子航 法研究所入所.工博.分散コンピューティ ング,航空監視システム,交通情報システ ムなどの研究に従事.IEEE シニア会員.

稲葉 敬之 (正員)

昭 56 東工大・理・物理卒,昭 58 同大 大学院修士課程了.同年,三菱電機(株) 入社.平 20 年 4 月より電通大教授.工 博.レーダ信号処理,超電導磁気センサ信 号処理,アダプティブアレー信号処理,車 載レーダの研究開発等に従事.IEEE シニ

ア会員.