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Abstract Authors have been developing a range estimation method for a high range resolution by coherent signal processing 

using radar data operated in separated frequency bands. It is expected that this technique can obtain the high resolution 

avoiding the increase of a hardware load without the degradation of the detectable range, which generally become a problem 

with the expansion of the transmission bandwidth. In this paper, we explain the receiving signal model before synthetic 

bandwidth of multiple frequency (MF) radar operated in separated frequency bands. The coherently combining 

sparse-multiband (CCSM) processing which is iterative signal processing composed by signal extraction, coherently 

combining, range estimation, and complex amplitude estimation is described. The iterative process is based on RELAX 

algorithm. We also show the simulation results using 2 and 8 separated narrow frequency bands data where two targets are 

separated with 0.170m and 0.042m equivalent to the range resolution of total transmission bandwidth, respectively. 
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1. Introduction 
In recent years, radar is expected to be utilized as a part 

of Intelligent Transport System (ITS). Automotive radar 

has been generally used in applications such as 

Autonomous Cruise Control (ACC), Collision Avoidance 

etc. By a revision of a radio law, 76GHz band, which will 

be expanded to 1GHz bandwidth, and 79GHz band, which 

will be expanded to 4GHz bandwidth, are combined to be 

allowed to used 5 GHz bandwidth (Ultra-wideband width) 

in the near future in Japan. The high range resolution can 

be achieved by the expanding of the transmission band 

width to ultra-wide bandwidth, since the range resolution 

depends on the transmission band width. However, we face 

the increase of a hardware load and the degradation of the 

Signal to Noise ratio of the receiver associated with 

expanding the transmission bandwidth resulting in 

degradation of detectable range. 

Authors have developed millimeter wave radar using 

stepped multiple frequency Complementary Phase Code 

(CPC) [1]. It could achieve a high range resolution and a 

long-range detection performance by a narrow band 

receiver compared with the transmission bandwidth [2]. 

We have previously demonstrated that the radar operated 

in 60GHz/76GHz band with 430MHz bandwidth satisfied 

the expected performance of the sidelobe and the range 

resolution. 

 Authors are developing a range estimation method 

with a more high range resolution by the expansion of 

total frequency bandwidth by coherent signal processing 

using radar data operated in separated frequency bands. 

[3] [4] [5]. This method has an advantage of that avoid the 

deterioration of the detectable range. The method is also 

expected to enables us to realize to utilize the ultra-wide 

bandwidth by common hardware systems. In this method, 

the difference of complex amplitudes between the 

frequency bands, which is considered to adverse effects on 

the estimation results, is compensated. In this paper, we 

explain the receiving signal model before synthetic 

bandwidth of the multiple frequency (MF) radars [2] [6] 

[7] operating in separated frequency bands and describe 

the iterative range estimation method of coherently 

combining sparse-multiband (CCSM) processing. The 

method itself can be also applied not only MF radars but to 

Pulse Compression (PC) radar [8] data after the pulse 

compression process in frequency domain. We also show 

the simulation results using 2 and 8 separated frequency 

bands data where two targets are separated with 0.170m 

and 0.042m equivalent to the range resolution of total 

transmission bandwidth, respectively.  
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2. Signal model before synthetic bandwidth of 

MF radar operated in separated frequency 

bands 

In this section, we formulate the signal model of MF 

radar operated in the separated frequency band. The 

synthetic band processing in MF radar can obtain a high 

range resolution with a narrow bandwidth compared with 

transmission bandwidth by performing IDFT in the 

frequency direction on the signal after Pulse Doppler 

Filter (PDF). For simplicity, we formulate the signal 

model of the case of continuous wave. The method in this 

paper can be also applied to MF radar such as stepped 

multiple frequency CPC [1], stepped multiple frequency 

interrupted CW [7], and so on. The method also applied to 

Pulse Compression (PC) radar [8] data after the pulse 

compression process in frequency domain.  

The received RF signal , ,  from k th target is 

denoted by following equation 

, , , ∙ exp 2 Δ
4 Δ

,  

(1) 

where , , , Δ , , , , and ,  are 

complex amplitude of the target, bottom carrier frequency 

of each band, frequency step width, Doppler frequency of 

the target, range of the target, and an initial phase, 

respectively. iF and n indicates the number of frequency 

bands and frequency step. The baseband signal , ,  

after mixing with local signal is denoted by  

, , , ∙ 2     (2)           

Thus the signal after PDF in consideration of the 

difference of Doppler frequency due to the frequency steps 

is obtained as expressed by equation (3). The signal 

corresponds to the input data of synthetic band processing. 

, , ∙                 (3)                       

Therefore, the observation data after PDF from all targets 

in observation area  is expressed as a linear 

summation and Gaussian noise 

∑ , ∙       (4) 

The observation data vector ∈  is also expressed by 

direction matrix A and target amplitude vector .  
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, , , , … , ,          (8) 

where  is direction vector and  is random 

phase term associated with the small range difference due 

to the radar locations and snapshots. The signal model 

before Synthetic Bandwidth processing of MF radars 

operated in separated frequency bands is also illustrated in 

Fig.1. 

 

3. Signal Processing 
Authors are developing a range estimation method with a 

high-resolution to expand the transmission bandwidth by 

coherent signal processing using measured radar data 

operated in separated bands. CCSM processing and the 

concept have been described in previous literature in 

Japanese [4] [5]. The modified points from the previous 

literature are as follows.  

 The mode vector ́  is modified to obtain complex 

amplitude of the targets to connect the target signal 

between frequency bands without discontinuity in phases. 

That is described in section 3.1. 

 The steering vector to search the likelihood function 

,  described in section 3.2 is modified to be designed 

in consideration with the distortion of the waveform in 

subtraction process. 

 CCSM is modified to be based on RELAX algorithm, which 

was based on Cyclic algorithm [9]. That is described in 

section 3.4. 

From Equation (4), range estimation of MF radar is a 

frequency estimation problem (phase gradient estimation) 

in frequency direction (n direction) involved in the 

observation data. CCSM is composed of signal extraction, 

coherently combining, range estimation, and complex 

amplitude estimation, and their iteration. The modified 

CCSM is described in this chapter. 

 

Fig. 1 Illustration of the signal model before Synthetic 

Bandwidth processing of MF radars operated in separated 

frequency bands 

Target 
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Target

01 01 01

- 40 -



 
  

 

3.1 Signal extraction  

 The signal components associated targets except for the 

target for range estimation are subtracted by following 

subtraction process. The signal associated with only the 

target for range estimation, (separated signal) ,  is 

obtained as described by  

, ∑ ́ ́

́ ́,                       (9) 

́ exp
4

,

	
4 Δ ,… ,

4 1 Δ
		  

(10) 

0, 		, … , ∙ ∙ , … , ∙ 1 ∙         (11) 

where ́  denotes the mode vector. The mode vector is 

modified from literature [4] to obtain complex amplitude 

of the targets to connect the target signal between 

frequency bands without discontinuity in phases.  

denotes estimated range of i th target. The estimated range 

for all targets (not true range) is assumed to have been 

obtained by some way here. This process corresponds to 

that of CA and RELAX algorithm. 

3.2 Coherently combining and range estimation 

 The steering vector ,  for estimating the range of k 

th target is expressed by following equation using 

estimated target amplitude vector .  

, ,                       (12) 

, ∑ ́ ́

́ ́,                  (13) 

́ , ́ , 	 ⋯ , ́             (14) 

			 ́ 	 		
́ 	

             (15) 

where < i> denotes i th column vector of a matrix. Note that 

the distortion of the waveform by subtraction process is 

also considered to make the steering vector. The distortion 

is not considered in original CA and RELAX algorithm. 

The range of k th target is estimated by searching the 

range where the likelihood function  described 

below takes the maximum value. The process has multiple 

step search, in which coarse search is performed first and 

then fine search focusing on the result of the coarse search 

is performed. 

argmax                           (16) 

 

∙ ∙ ∙

∙
                    (17) 

, , , , 	 ⋯ , ,              (18) 

, , , , 	 ⋯ , ,                       (19) 

where NF  is the number of frequency bands.  and 

 are generated by stacking ,  and ,  for 

bands. In this process, the coherent vector dimension is 

expanded to NF times, since data vector  is coherently 

combined.  

3.3 Complex amplitude estimation 

 The target amplitude vector is estimated by following 

equation using estimated direction matrix , which 

corresponds to generalized inverse matrix of the estimated 

direction matrix.  

∙ ∙ ∙                       (20) 

 

3.4 CCSM processing algorithm 

In CCSM processing, targets range are estimated 

recursively by signal processing composed by signal 

extraction, coherently combining, range estimation, and 

complex amplitude estimation. The iterative process is 

based on RELAX algorithm [9]. It is noted that the 

steering vector to search the likelihood function is 

designed in consideration with the distortion of the 

waveform by the subtraction process. CCSM processing 

algorithm based on RELAX algorithm is listed below. 

 

Fig.2 CCSM processing algorithm based on RELAX 

CCSM processing algorithm 

for  = 1, 2, …   

     repeat 

        for  k= 1, 2, …K  

           

          , ∑ ,  

          argmax  

          ∙ ∙ ∙  

         end for 

     until (convergence) 

  end for 
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synthetic bandwidth of the stepped multiple frequency 

CPC of simulations and experiments. 
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