
  
   

THE INSTITUTE OF ELECTRONICS,  IEICE Technical Report  
INFORMATION AND COMMUNICATION ENGINEERS 

 
This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere. 

Copyright ©20 by IEICE 

An Analysis of 3-dimensional Location and Velocity Estimation 
Using Range and Doppler Measurements  

Yoshio KOSUGE†, ††   Tadashi KOGA†   Hiromi MIYAZAKI†  

Manabu AKITA††, and Takayuki INABA†† 

Electronic Navigation Research Institute, 7-4-23 Jindaijihigashi-machi, Chofu-shi, Tokyo, 182-0012 Japan 

††University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585 Japan 
 

E-mail:  kosuge@enri.go.jp, y-kosuge@uec.ac.jp 

Abstract  In a TOA (Time of Arrival) system such as the GPS, a target location can be estimated from several distance (range) 

measurements between a target location and reference points by the Taylor-series estimation. However, accuracy of estimated target location 

is very sensitive to target and reference points geometry. In this paper, we illustrate theoretically that we can always estimate 3-dimensional 

target location and velocity using several range and Doppler measurements when we can estimate 3-dimensional target location using the 

conventional TOA system with only range measurements. We also prove that estimated location accuracy becomes better when using 

additional Doppler measurements even in cases of poor target and reference points geometry or bad Doppler measurement accuracy. 
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1. Introduction 

In a TOA (Time of Arrival) system such as the GPS 
(Global Positioning System), a target location can be 
estimated from several range measurements between a 
target location and a reference point at known location as 
shown in Fig.1 by Taylor-Series estimation [1]~[5].  

There are two approaches to obtain these range 
measurements. The first approach is to obtain the range 
measurements between a receiver at known location and 
the target that have a transmitter. The second approach is 
to obtain the range measurements between a transmitter at 
known location and the target that have a receiver such as 
the GPS [1]~[4]. 

In this paper we assume that the clocks of all reference 
points are synchronized and there exists a clock offset 
between the transmitter clock and the receiver clock in a 
TOA system [1]~[4]. Then, it is necessary to obtain at 
least four range measurements to estimate 3-dimensional 
target location and the clock offset. Actually, we can 
estimate these four unknowns by the Taylor-series 
estimation [1]~[3]. 

Here, Taylor-series estimation (also Gauss-Newton 
algorithm) is an iterative method for solving non-linear 
least squares problems, starting with an initial estimate 
and converging the estimate. 

By the way, target tracking is the processing of target 
measurements obtained by a sensor in order to maintain an 
estimate of its current and future state such as position and 
velocity assuming that noisy target measurements are 
obtained by a sensor, usually only position measurements 
[6]~[9]. 

 
Fig.1 TOA 

 
It was reported that the tracking performance using both 

position and velocity measurements could be better than 
that of tracking filter using only position measurements 
[9].  

Therefore, accuracy of GPS tracking could be improved 
when we estimate position and velocity by using both 
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range and Doppler measurements. 
However, accuracy of position measurements does not 

have deterioration by obtaining velocity measurements is 
a prerequisite for improving tracking performance. 

Furthermore, accuracy of estimated target location is 
very sensitive to target and reference points geometry in 
the TOA.  

In this paper, we make it clear whether we can estimate 
3-dimensional target location and velocity using several 
range and Doppler measurements when we can estimate 
3-dimensional target location using the conventional TOA 
system. We also make it clear whether estimated location 
accuracy becomes better when using additional Doppler 
measurements even in cases of poor target and reference 
points geometry or bad Doppler measurement accuracy.  

2. Location and velocity estimation 

In this chapter, we assume that we can obtain n pairs of 
range and Doppler measurements from n reference points. 
Let DT  be the transpose of a matrix D . 

2.1. Range measurement model 

Let Bi  be a known location vector of an i i = 1,2, ,n( )
th reference point in 3-dimensional Cartesian coordinates 
given by:  

Bi = xi , yi , zi( )T     (1) 

Let L  be an unknown location vector of the target in 

3-dimensional Cartesian coordinates given by:  

L = x, y, z( )T     (2) 

Then, the true range (distance) Ri  between the target 

location and the th reference point is defined as: 
Ri = fi x, y, z( )     (3) 

where 

fi x, y, z( ) = xi − x( )2 + yi − y( )2 + zi − z( )2   (4) 

 Therefore, the range measurement Rio  between a 

target location and the th reference point can be 
obtained as: 

Rio = Ri + S + vi     (5) 

where Ri + S  is the  noiseless pseudorange, S  is the 

range bias caused by the clock offset between the 
transmitter clock and the receiver clock, vi  is the 

random range measurement noise. 
Then, we obtain the following property using the total 

differential (Taylor-series linearization). 

(Property1) Let x0, y0, z0  be an initial (nominal) 
estimate of the target location. Then the following result 
holds: 

ΔRio = α i βi γ i 1( )al + vi    (6) 

where 

ΔRio = Rio − fi x0, y0, z0( )  
  (7) 

al = x − x0, y − y0, z − z0,S( )T   (8) 

α i = − xi − x0
fi x0, y0, z0( ) ,βi = − yi − y0

fi x0, y0, z0( ) ,γ i = − zi − z0
fi x0, y0, z0( )

     (9) 
Here, α i ,βi ,γ i( )  is the unit vector from the reference 

point i to the initial target location x0, y0, z0( )T
 

as shown in 

Fig.2. 

 
Fig.2 Linear approximation coefficients 

 

2.2. Doppler measurement model 

Let  Bi  be a known velocity vector of an  i i = 1,2, ,n( )
th reference point in 3-dimensional Cartesian coordinates 
given by:  

Bi = xi , yi , zi( )T     (10) 

Let L  be an unknown vector vector of the target in 

3-dimensional Cartesian coordinates given by:  

L = x, y, z( )T     (11) 

Then, the true Doppler Ri  between the target location 

and the th reference point is defined as: 

Ri = gi x, y, z, x, y, z( )     (12) 

i

i

i
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where 

 

gi x, y, z, x, y, z( ) =
xi − x( ) xi − x( ) + yi − y( ) yi − y( ) + zi − z( ) zi − z( )

fi x, y, z( )
 (13) 

 Therefore, the Doppler measurement  Rio  between a 

target location and the th reference point can be 
obtained as: 

Rio = Ri + vi     (14) 
where vi  is the random Doppler measurement noise. 

Then, we obtain the following property using the total 
differential (Taylor-series linearization). 

(Property2) Let  x0, y0, z0  be an initial (nominal) 

estimate of the target velocity. Then the following result 
holds: 

ΔRio = α il βil γ il 0 α i βi γ i( )a + vi   (15) 

where 

ΔRio = Rio − gi x0, y0, z0, x0, y0, z0( )    (16) 

 a = x − x0, y − y0, z − z0,S, x − x0, y − y0, z − z0( )T  (17) 

α il =

−
xi − x0( ) fi x0, y0, z0( )− gi x0, y0, z0, x0, y0, z0( ) xi − x0( )

fi x0, y0, z0( )2
βil =

−
yi − y0( ) fi x0, y0, z0( )− yi − y0( )gi x0, y0, z0, x0, y0, z0( )

fi x0, y0, z0( )2
γ il =

−
zi − z0( ) fi x0, y0, z0( )− zi − z0( )gi x0, y0, z0, x0, y0, z0( )

fi x0, y0, z0( )2

 (18) 

2.3. Linear model of measurements 
 The following linear model can be obtained from Eqs.(6) 
and (15) when  reference points are used: 

  
  (19) 

where 

 b = ΔR1o,ΔR2o, ,ΔRno,ΔR1o,ΔR2o, ,ΔRno( )T  (20) 

 

A =

α1 β1 γ 1 1 0 0 0

α 2 β2 γ 2 1 0 0 0

α n βn γ n 1 0 0 0

α1l β1l γ 1l 0 α1 β1 γ 1
α 2l β2l γ 2l 0 α 2 β2 γ 2

α nl βnl γ nl 0 α n βn γ n

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (21) 

 vl = v1,v2, ,vn( )T    (22) 

 vd = v1,v2, ,vn( )T    (23) 

v = vl
T ,vd

T( )T     (24) 

and we call A  a placement matrix.  
 By the way, we assume that measurement noises are zero 
mean and uncorrelated among the sensors as follows: 

E v[ ] = 0     (25) 

V = E vvT⎡⎣ ⎤⎦ =
Vl Vld
Vld Vd

⎛

⎝
⎜

⎞

⎠
⎟   (26) 

Vl = E vl vl
T⎡⎣ ⎤⎦ = diag σ 1

2,σ 2
2, ,σ n

2{ }   (27) 

 
Vd = E vd vd

T⎡⎣ ⎤⎦ = diag σ 1d
2 ,σ 2d

2 , ,σ nd
2{ }  (28) 

 
Vld = E vl vd

T⎡⎣ ⎤⎦ = diag ρ1σ 1σ 1d ,ρ2σ 2σ 2d , ,ρnσ nσ nd{ }  (29) 

Here, E[ ]  indicates the mean, diag a1,a2, ,an{ }
indicates the diagonal matrix whose elements are

a1,a2, ,an . 

To simplify a description, we define the following 
equations using Eqs.(9) and (18): 

 ω i( ) = α i βi γ i( )    (30) 

 δ i( ) = ω i( ) 1( )    (31) 

 κ i( ) = α il βil γ il 0( )    (32) 

 
 
Al = δ 1( )T δ n( )T( )T    (33) 

  
Ald = κ 1( )T κ n( )T( )T    (34) 

  
Ad = ω 1( )T ω n( )T( )T    (35) 

 Then we can obtain the following equation from Eq. (21): 

 

A =
Al On,3

Ald Ad

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   (36) 

Here, Om,n
is an m × n  zero matrix. 

2.4. Weighed least-squares method 
 The following property shows that we can estimate the 
target location and velocity using the weighed 

i

n
b = Aa + v
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least-squares method [10], [11]. Namely, we minimize the 

following equation to obtain an optimal estimate  for 

the location vector, velocity vector and the range bias: 

 J = b − Aâ( )T V −1 b − Aâ( )        (37) 

 Here, D−1  is an inverse of a matrix D . 
 Then, we obtain the following property. 
(Property3) Let  be invertible. Then the 

following result holds: 

 â = ATV −1A( )−1 ATV −1b    (38) 

 The following property shows that â  is the unbiased 

estimate and its estimated covariance matrix. 
(Property4) The following result holds: 

E â[ ] = a      (39) 

E â − a( ) â − a( )T⎡⎣ ⎤⎦ = ATV −1A( )−1    (40) 

2.5. Observability 
 The following property shows that if the rank of matrix 
Al  is 4, then the rank of matrix Ad  is 3. 
(Property5) Let 4 ≤ n . Then, we can find 3 independent

vectors among ω i( ),ω j( ),ω k( ),ω l( )  in the matrix Ad  if 

we can find 4 independent δ i( ),δ j( ),δ k( ),δ l( )
i < j < k < l( )   in the matrix Al  and the rank of matrix A  

is 7. 
The following property shows that ATV −1A  has inverse 

if the rank of matrix Al  is 4 and V > 0 . Here, D > 0  

indicates that a matrix D  is positive definite, and D ≥ 0  

indicates that a matrix D  is positive semi-definite. 
(Property6) Let 4 ≤ n  and Q  be a 2n × 2n  
positive-definite matrix. Then, ATQA  is invertible if we 

can find 4 independent δ i( ),δ j( ),δ k( ),δ l( ) i < j < k < l( )  in 

the matrix Al .  
 The following property shows that we can determine 

whether  has inverse only using the unit vector 

. 

(Property7) Let 4 ≤ n , Q  be a 2n × 2n  positive-definite 

matrix and k  be one of  1, ,n . Then, ATQA  is 

invertible if we can find 3 independent ω j( )−ω k( )  
j =1, ,n, j ≠ k( ) .  

2.6. Measurement noise covariance matrix 
The following property shows that V  is the 

non-singular matrix if the absolute value of correlation 
coefficient ρi  between range and Doppler measurements 

is less than 1.  

(Property8) Let σ i > 0,σ id > 0, ρi <1 i =1, ,n( ) . Then, 

the following result holds: 

V > 0      (41) 

3. Comparison of estimated location accuracy 
In this chapter, we compare the estimated location 

accuracy between the conventional TOA only using range 
measurements and the TOA using additional Doppler 
measurements theoretically. 

3.1. Conventional TOA 
 The following linear model of range can be obtained 
from Eqs.(6), (30), (31), (33), (8) and (22) when  

reference points are used: 
bl = Al al + vl   

  (42) 

where 

 bl = ΔR1o,ΔR2o, ,ΔRno( )T    (43) 

 The following property shows that we can estimate the 
target location and range bias using the weighed 
least-squares method without Doppler measurements [10], 
[11]. Namely, we minimize the following equation to 

obtain an optimal estimate âl  for the location vector and 

the range bias: 

Jl = bl − Al âl( )T Vl−1 bl − Al âl( )       (44) 

 Then, we obtain the following property. 

(Property9) Let Al
TVl

−1Al  be invertible. Then the 

following result holds: 

âl = Al
TVl

−1Al( )−1 AlTVl−1bl    (45) 

 By the way, Al
TVl

−1Al  is invertible if and only if we can 

find 3 independent ω j( )−ω k( )  j =1, ,n, j ≠ k( )  [3]. 

 The following property shows that âl  is the unbiased 

estimate and its estimated covariance matrix. 
(Property10) The following result holds: 

E âl[ ] = al     (46) 

E âl − al( ) âl − al( )T⎡
⎣

⎤
⎦ = Al

TVl
−1Al( )−1 > 0  (47) 

3.2. Estimation with Doppler measurements 
The following equation, Eqs.(8) and (17) show the 

estimated location and range bias in the TOA with Doppler 

â

ATV −1A

ATV −1A

ω i( )

n
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measurements.  
âD = Nâ     (48) 

where 

 N = I4 O4.3( )     (49) 

 The following property shows that âD  is the unbiased 
estimate and its estimated covariance matrix. 
 (Property11) The following result holds: 

E âD[ ] = al     (50) 

E âD − al( ) âD − al( )T⎡
⎣

⎤
⎦ = N ATV −1A( )−1NT

 
(51) 

  The property11 can be proved analytically using the 
property4. 

3.3. Comparison 
 It is necessary to evaluate âl (without Doppler 

measurements) and âD with Doppler measurements  to 
compare the estimated location and range bias accuracy. 

 Eqs.(46) and (50) show that both âl  and âD  are the 

unbiased estimate.  

 The following property shows that estimated location and 

range bias accuracy of the TOA with additional Doppler 

measurements is better than that of the conventional TOA 

only using range measurements because Eqs.(47) and (51) 

hold.  

(Property12) Let 4 ≤ n , k  be one of 1, ,n  and 

σ i > 0,σ id > 0, ρi <1 i =1, ,n( ) .  Then, the following result 

holds if we can find 3 independent ω j( )−ω k( )  

j =1, ,n, j ≠ k( ) . 

 N ATV −1A( )−1NT ≤ Al
TVl

−1Al⎡⎣ ⎤⎦
−1    (52) 

  The property12 can be proved analytically using the 
matrix theory. 

4. Consideration 
4.1. Observability 

When we can estimate 3-dimensional target location and 
range bias using the conventional TOA, we can find find 3 
independent ω j( )−ω k( )  j =1, ,n, j ≠ k( )  in the matrix Al  

and then we can also estimate 3-dimensional target 
location, velocity and range bias using additional Doppler 
measurements (see property7). 

4.2. Numerical results 
Numerical calculations are conducted in order to 

present an example where there exists the difference 
between the TOA with additional Doppler measurements 

and the conventional TOA only using range measurements 
in terms of the estimated location error variance.   
 We assume that a target that has a transmitter and 3 
receivers are on the plane for simplicity. 

We assume that the target and receivers are located at

B1 =
1
0

⎛
⎝⎜

⎞
⎠⎟
,B2 =

0
1

⎛
⎝⎜

⎞
⎠⎟
,B3 =

0
0

⎛
⎝⎜

⎞
⎠⎟
,L = 1

1

⎛
⎝⎜

⎞
⎠⎟

  (53) 

as shown in Fig.3.  
 We assume that the velocity vectors are as follows. 

 B1 =
0
0

⎛
⎝⎜

⎞
⎠⎟
,B2 =

0
0

⎛
⎝⎜

⎞
⎠⎟
,B3 =

0
0

⎛
⎝⎜

⎞
⎠⎟
,L = 1

0

⎛
⎝⎜

⎞
⎠⎟

 (54) 

 

      
Fig.3 Target and receivers geometry 

 

We also assume that x0, y0( )T = L , 
 x0, y0( )T = L , S > 0 , 

and σ i
2 = 0.01,σ id

2 = a2,ρi = 0 i = 1,2,3( ) .  

  Then, we can obtain the following results from 
Eqs.(33)~(36).  

 A =
Al O3,2

Ald A3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

      (55) 

 
Al =

0 1 1
1 0 1
1

2

1

2
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (56) 

 
Ald =

1 0 0
0 0 0
1

2 2
− 1

2 2
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    (57) 

 Ad =

0 1
1 0
1

2

1

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (58) 
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 Let estimated location error variances of the TOA with 
additional Doppler measurements and the conventional 
TOA be Pld ,Pl , respectively. Here, variances of estimated 

location error of x coordinate are the same as that of y 
coordinate. Then, we can obtain the following results 
theoretically. 

 Pl = 0.01 3 2 + 5( )       (59) 

 
Pld =

0.01

16a2 + 0.01
⋅ 24a

2 + 0.01
2

+ 0.01

8 3 2 − 4( )a2 + 3 2 ⋅0.01
⋅
32 3 2 + 4( )a4
16a2 + 0.01

  (60) 

 Then we obtain the following results from Eqs.(59) and 
(60).  
 Pl > Pld        (61) 

 Pld → Pl a2 →∞( )       (62) 

 Pld → 0.01 2 a2 → 0( )      (63) 

 Fig.4 shows the ratio of estimated location error variance 
Pld Pl  as the function of variances of Doppler 

measurements a2 .  

 
Fig.4 Ratio of estimated location error variance 

 
 Eq.(61) shows that there exists an example where 
estimated location accuracy of the TOA with additional 
Doppler measurements is not equal to that of the 
conventional TOA only using range measurements. 
 Eq.(62) shows that there is no difference between the 
TOA with additional Doppler measurement and the 
conventional TOA only using range measurements in 

terms of estimated location accuracy when the variance of 
Doppler measurement is very large . 
 Eq.(63) shows that estimated location error variance of 
the TOA with additional Doppler measurements converges 
to half of range measurement error variance when the 
variance of Doppler measurement are very small . 

5. Conclusions 
In this paper, we illustrated that when we can estimate 

3-dimensional target location using the conventional TOA 
system only using range measurements, we can also 
estimate 3-dimensional target location and velocity using 
several range and Doppler measurements. We also showed 
that estimated location accuracy becomes better when 
using additional Doppler measurements even in cases of 
poor target and reference points geometry or bad Doppler 
measurement accuracy theoretically. 

 

References 
[1] Y.Bar-Shalom, X.R.Li and T.Kirubarajan, Estimation 

with Applications to Tracking and Navigation,  John 
Wiley & Sons, New York, 2001. 

[2] M.S,Grewal, L.R.Weill, A.P.Andrews, Global 
Positioning Systems, Inertial Navigation, and 
Integration, John Wiley & Sons, Hoboken, 2007. 

[3] Y.Kosuge, “A Measure of Estimated Accuracy Using 
Singular Values for TOA Location System,” 
ICSANE2014, pp.107-112, Oct. 2014. 

[4] J. Yan, C.C.J.M. Tiberius, G.J.M Janssen and P.J.G. 
Teunissen, “Review of range-based positioning 
Algorithms, ” IEEE Aerosp.& Electron.Syst., vol.28, 
no.8, pp.2-27, Aug. 2013. 

[5] W. H. Foy, “Position-location Solutions by 
Taylor-series Estimation,” IEEE Trans. Aerosp.& 
Electron.Syst., vol.12, no.2, pp.187-194, March 
1976. 

[6] S.S.Blackman, Multiple Target Tracking with Radar 
Applications, ArtechHouse, Dedham, 1986. 

[7] P.L.Bogler, Radar Principles with Applications to 
Tracking Systems, John Wiley & Sons, New York, 
1990. 

[8] S.S.Blackman. and R.Popoli, Design and Analysis of 
Modern  Tracking Systems, ArtechHouse, Boston, 
1999  

[9] Y.Kosuge, “A Two-dimensional Decoupled Filter 
Using Position and Velocity Measurements for a 
Transient Response,” ICSANE2013, pp. 23-28, Dec. 
2013. 

[10] A.Gelb,ed., Applied Optimal Estimation, The M.I.T. 
Press, Cambridge, 1974. 

[11] A.H.Jazwinski, Stochastic Processes and Filtering 
Theory, Academic Press, San Diego, 1970. 

- 168 -



 
 
    
   HistoryItem_V1
   AddNumbers
        
     範囲:   1ページから  ページ 7
     フォント: Times-Roman 10.5 ポイント
     オリジナル: 中央下
     オフセット: 横方向 0.00 ポイント, 縦方向 36.28 ポイント
     前置文字列: - 
     後置文字列:  -
     レジストレーションカラーを使用: いいえ
      

        
     1
     0
      -
     BC
     - 
     1
     163
     TR
     1
     0
     857
     373
    
     0
     1
     10.5000
            
                
         Both
         1
         SubDoc
         7
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     0.0000
     36.2835
      

        
     QITE_QuiteImposingPlus3
     QI+ 3.0g
     QI+ 3
     1
      

        
     0
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base



